Вписані й описані чотирикутники

Матеріал з Фізмат Вікіпедії
Перейти до: навігація, пошук

Вписані й описані чотирикутники Вписані й описані чотирикутники Теорема 1. Нав­коло чотирикутника можна описати коло тоді й тільки тоді, коли сума його протилежних кутів дорівнює Вписані й описані чотирикутники. На рисунку Вписані й описані чотирикутники. Із цього випливає, що коло можна описати навколо прямокутника (рисунок нижче зліва), зокрема квадрата (рисунок справа), його центром буде точка перетину його діагоналей. Радіус — половина діагоналі. Вписані й описані чотирикутники Коло можна описати навколо трапеції тоді й тільки тоді, коли вона є рівнобічною (див. рисунок). Центром кола є точка перетину середніх перпендикулярів до сторін. Навколо паралелограма та трапеції загального виду описати коло не можна. (Зокрема, навколо ромба не можна описати коло.) Вписані й описані чотирикутники Теорема 2. Чотирикутник тоді й тільки тоді можна описати навколо кола, якщо суми його протилежних сторін дорівнюють одна ­одній. На рисунку Вписані й описані чотирикутники. Вписані й описані чотирикутники Отже, коло можна вписати в ромб (зокрема у квадрат), але не можна в прямокутник або паралелограм загального виду. Центр кола, вписаного в ромб, є точкою перетину діагоналей (рисунок нижче зліва). Радіус кола дорівнює половині висоти ромба, а у квадраті — половині сторони (рисунок справа). Вписані й описані чотирикутники Зверніть увагу: радіус вписаного в ромб кола (ON) — це висота прямокутного трикутника BOC, яка проведена з вершини прямого кута і має всі властивості висоти прямокутного трикутника, що проведена з вершини прямого кута. Теорема 3. Трапецію тоді й тільки тоді можна описати навколо кола, коли сума її основ дорівнює сумі бічних сторін (рисунок нижче зліва). Центр цього кола — точка перетину бісектрис кутів трапеції. Радіус дорівнює половині висоти трапеції. У випадку рівнобічної трапеції центр вписаного кола лежить на середині висоти трапеції, яка проходить через середини основ (рисунок справа). Бічна сторона трапеції у цьому випадку дорівнює її середній лінії. Вписані й описані чотирикутники Вписані й описані чотирикутникиВписані й описані чотирикутники